Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Theranostics ; 14(6): 2589-2604, 2024.
Article in English | MEDLINE | ID: mdl-38646647

ABSTRACT

Background: The mechanisms underlying the increased mortality of secondary infections during the immunosuppressive phase of sepsis remain elusive. Objectives: We sought to investigate the role of Siglec-F+ neutrophils on splenic T lymphocytes in the immunosuppressed phase of sepsis and on secondary infection in PICS mice, and to elucidate the underlying mechanisms. Methods: We established a mouse model of sepsis-induced immunosuppression followed by secondary infection with LPS or E. coli. The main manifestation of immunosuppression is the functional exhaustion of splenic T lymphocytes. Treg depletion reagent Anti-IL-2, IL-10 blocker Anti-IL-10R, macrophage depletion reagent Liposomes, neutrophil depletion reagent Anti-Ly6G, neutrophil migration inhibitor SB225002, Siglec-F depletion reagent Anti-Siglec-F are all used on PICS mice. The function of neutrophil subsets was investigated by adoptive transplantation and the experiments in vitro. Results: Compared to other organs, we observed a significant reduction in pro-inflammatory cytokines in the spleen, accompanied by a marked increase in IL-10 production, primarily by infiltrating neutrophils. These infiltrating neutrophils in the spleen during the immunosuppressive phase of sepsis undergo phenotypic change in the local microenvironment, exhibiting high expression of neutrophil biomarkers such as Siglec-F, Ly6G, and Siglec-E. Depletion of neutrophils or specifically targeting Siglec-F leads to enhance the function of T lymphocytes and a notable improvement in the survival of mice with secondary infections. Conclusions: We identified Siglec-F+ neutrophils as the primary producers of IL-10, which significantly contributed to T lymphocyte suppression represents a novel finding with potential therapeutic implications.


Subject(s)
Interleukin-10 , Neutrophils , Sepsis , Sialic Acid Binding Immunoglobulin-like Lectins , Spleen , Animals , Spleen/immunology , Neutrophils/immunology , Neutrophils/metabolism , Mice , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sepsis/immunology , Interleukin-10/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Immunosuppression Therapy , Escherichia coli Infections/immunology , Male , Cytokines/metabolism , Immune Tolerance , T-Lymphocytes, Regulatory/immunology
2.
Brain Pathol ; : e13253, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454310

ABSTRACT

Memory impairment is one of the main characteristics of postoperative cognitive dysfunction. It remains elusive how postoperative pathological changes of the brain link to the memory impairment. The clinical setting of perioperation was mimicked via partial hepatectomy under sevoflurane anaesthesia together with preoperative restraint stress (Hep-Sev-stress) in mice. Memory changes were assessed with fear conditioning. The medial prefrontal cortex (mPFC)-dorsal hippocampus connectivity was evaluated with injecting neurotracer 28 days before surgery. Astrocytic activation was limited via injecting AAV-GFAP-hM4Di-eGFP into the mPFC. Astrocytic and microglial phagocytosis of synapses were visualised with co-labelling hippocampal neuronal axon terminals with PSD-95 and S100ß or Iba1. Neuroinflammation and oxidative stress status were also detected. Hep-Sev-stress impaired the memory consolidation (mean [standard error], 49.91 [2.55]% vs. 35.40 [3.97]% in the contextual memory, p = 0.007; 40.72 [2.78]% vs. 27.77 [2.22]% in cued memory, p = 0.002) and the cued memory retrieval (39.00 [3.08]% vs. 24.11 [2.06]%, p = 0.001) in mice when compared with these in the naïve controls. Hep-Sev-stress damaged the connectivity from the dorsal hippocampus to mPFC but not from the mPFC to the dorsal hippocampus and increased the astrocytic but not microglial phagocytosis of hippocampal neuronal axon terminals in the mPFC. The intervention also induced neuroinflammation and oxidative stress in the dorsal hippocampus and the mPFC in a regional-dependent manner. Limiting astrocyte activation in the mPFC alleviated memory consolidation impairment induced by Hep-Sev-stress. Postoperative memory consolidation was impaired due to astrocytic phagocytosis-induced connectivity injury from the dorsal hippocampus to the medial prefrontal cortex.

3.
J Evid Based Med ; 17(1): 207-223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530771

ABSTRACT

Postoperative gastrointestinal disorder (POGD) was a common complication after surgery under anesthesia. Strategies in combination with Traditional Chinese Medicine and Western medicine showed some distinct effects but standardized clinical practice guidelines were not available. Thus, a multidisciplinary expert team from various professional bodies including the Perioperative and Anesthesia Professional Committees of the Chinese Association of Integrative Medicine (CAIM), jointly with Gansu Province Clinical Research Center of Integrative Anesthesiology/Anesthesia and Pain Medical Center of Gansu Provincial Hospital of Traditional Chinese Medicine and WHO Collaborating Center for Guideline Implementation and Knowledge Translation/Chinese Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Center/Gansu Provincial Center for Medical Guideline Industry Technology/Evidence-based Medicine Center of Lanzhou University, was established to develop evidence-based guidelines. Clinical questions (7 background and 12 clinical questions) were identified through literature reviews and expert consensus meetings. Based on systematic reviews/meta-analyses, evidence quality was analyzed and the advantages and disadvantages of interventional measures were weighed with input from patients' preferences. Finally, 20 recommendations were developed through the Delphi-based consensus meetings. These recommendations included disease definitions, etiologies, pathogenesis, syndrome differentiation, diagnosis, and perioperative prevention and treatment.


Subject(s)
Gastrointestinal Diseases , Integrative Medicine , Humans , Medicine, Chinese Traditional , Gastrointestinal Diseases/prevention & control , Evidence-Based Medicine
4.
Biomed Pharmacother ; 174: 116462, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38513598

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) was reported to be one of the initiators of chronic kidney disease (CKD) development. Necroinflammation may contribute to the progression from AKI to CKD. Dexmedetomidine (Dex), a highly selective α2-adrenoreceptor (AR) agonist, has cytoprotective and "anti-" inflammation effects. This study was designed to investigate the anti-fibrotic properties of Dex in sepsis models. METHODS: C57BL/6 mice were randomly treated with an i.p. injection of lipopolysaccharides (LPS) (10 mg/kg) alone, LPS with Dex (25 µg/kg), or LPS, Dex and Atipamezole (Atip, an α2-adrenoreceptor antagonist) (500 µg/kg) (n=5/group). Human proximal tubular epithelial cells (HK2) were also cultured and then exposed to LPS (1 µg/ml) alone, LPS and Dex (1 µM), transforming growth factor-beta 1 (TGF-ß1) (5 ng/ml) alone, TGF-ß1 and Dex, with or without Atip (100 µM) in culture media. Epithelial-mesenchymal transition (EMT), cell necrosis, necroptosis and pyroptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were then determined. RESULTS: Dex treatment significantly alleviated LPS-induced AKI, myofibroblast activation, NLRP3 inflammasome activation, and necroptosis in mice. Atip counteracted its protective effects. Dex attenuated LPS or TGF-ß1 induced EMT and also prevented necrosis, necroptosis, and pyroptosis in response to LPS stimulation in the HK2 cells. The anti-EMT effects of Dex were associated with JNK phosphorylation. CONCLUSIONS: Dex reduced EMT following LPS stimulation whilst simultaneously inhibiting pyroptosis and necroptosis via α2-AR activation in the renal tubular cells. The "anti-fibrotic" and cytoprotective properties and its clinical use of Dex need to be further studied.

5.
Theranostics ; 14(2): 480-495, 2024.
Article in English | MEDLINE | ID: mdl-38169536

ABSTRACT

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Subject(s)
Anesthesia , Motor Cortex , Mice , Animals , Consciousness/physiology , Sevoflurane/adverse effects , Purkinje Cells/physiology , Calcium , Unconsciousness/chemically induced , Neurons , Glutamates/adverse effects , gamma-Aminobutyric Acid
6.
Am J Respir Cell Mol Biol ; 70(3): 215-225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061028

ABSTRACT

The function of type 2 immunity and mechanisms underlying the initiation of type 2 immunity after sepsis-induced lung injury remain unclear. Sphingosine-1-phosphate receptor 2 (S1PR2) has been demonstrated to modulate type 2 immunity in the context of asthma and pulmonary fibrosis. Thus, this study aims to investigate the role of type 2 immunity and whether and how S1PR2 regulates type 2 immunity in sepsis. Peripheral type 2 immune responses in patients with sepsis and healthy control subjects were assessed. The impact of S1PR2 on type 2 immunity in patients with sepsis and in a murine model of sepsis was further investigated. The type 2 innate immune responses were significantly increased in the circulation of patients 24 hours after sepsis, which was positively related to clinical complications and negatively correlated with S1PR2 mRNA expression. Animal studies showed that genetic deletion or pharmacological inhibition of S1PR2 induced type 2 innate immunity accumulation in the post-septic lungs. Mechanistically, S1PR2 deficiency promoted macrophage-derived interleukin (IL)-33 increase and the associated type 2 response in the lung. Furthermore, S1PR2-regulated IL-33 from macrophages mitigated lung injury after sepsis in mice. In conclusion, a lack of S1PR2 modulates the type 2 immune response by upregulating IL-33 release from macrophages and alleviates sepsis-induced lung injury. Targeting S1PR2 may have potential therapeutic value for sepsis treatment.


Subject(s)
Lung Injury , Sepsis , Animals , Humans , Mice , Interleukin-33 , Macrophages , Sepsis/complications , Sphingosine-1-Phosphate Receptors
7.
Aging Cell ; 23(3): e14074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38155547

ABSTRACT

Delirium is the most common neurological complication after cardiac surgery with adverse impacts on surgical outcomes. Advanced age is an independent risk factor for delirium occurrence but its underlying mechanisms are not fully understood. Although increased A1 astrocytes and abnormal hippocampal networks are involved in neurodegenerative diseases, whether A1 astrocytes and hippocampal network changes are involved in the delirium-like behavior of aged mice remains unknown. In the present study, a mice model of myocardial ischemia-reperfusion mimicking cardiac surgery and various assessments were used to investigate the different susceptibility of the occurrence of delirium-like behavior between young and aged mice and the underlying mechanisms. The results showed that surgery significantly increased hippocampal A1 astrocyte activation in aged compared to young mice. The high neuroinflammatory state induced by surgery resulted in glutamate accumulation in the extrasynaptic space, which subsequently decreased the excitability of pyramidal neurons and increased the PV interneurons inhibition through enhancing N-methyl-D-aspartate receptors' tonic currents in the hippocampus. These further induced the abnormal activities of the hippocampal neural networks and consequently contributed to delirium-like behavior in aged mice. Notably, the intraperitoneal administration of exendin-4, a glucagon-like peptide-1 receptor agonist, downregulated A1 astrocyte activation and alleviated delirium-like behavior in aged mice, while IL-1α, TNF-α, and C1q in combination administered intracerebroventricularly upregulated A1 astrocyte activation and induced delirium-like behavior in young mice. Therefore, our study suggested that cardiac surgery increased A1 astrocyte activation which subsequently impaired the hippocampal neural networks and triggered delirium development.


Subject(s)
Cardiac Surgical Procedures , Delirium , Mice , Animals , Astrocytes , Hippocampus/physiology , Neural Networks, Computer
9.
Front Pharmacol ; 14: 1223746, 2023.
Article in English | MEDLINE | ID: mdl-38034987

ABSTRACT

Objective: This study was determined to investigate the impact of intranasal dexmedetomidine (DEX) on postoperative sleep quality in older patients (age over 65) with chronic insomnia during their hospitalization after surgery. Design: A randomized double-blind controlled trial was conducted to compare the effects of intranasal dexmedetomidine spray with a placebo group. Setting and Participants: The study was carried out at Xiangya Hospital, Central South University. 110 participants with chronic insomnia were analyzed. Methods: This trial enrolled older patients who underwent total hip/knee arthroplasty and randomized them to receive intranasal dexmedetomidine (2.0 µg/kg) or saline daily at around 9 p.m. after surgery until discharge. The primary outcomes were subjective sleep quality assessed with the Leeds Sleep Evaluation Questionnaire (LSEQ). The secondary outcomes included the objective sleep quality measured with the Acti-graph, the Pittsburgh Sleep Quality Index (PSQI), the Insomnia Severity Index (ISI). The other outcomes included the incidence of delirium, levels of inflammatory factors, visual analog scale (VAS) pain scores, postoperative opioid consumption, and treatment-related adverse events. Results: 174 patients were screened for eligibility, and 110 were recruited and analyzed. The DEX group had significantly higher scores on both the LSEQ-Getting to sleep and LSEQ-Quality of Sleep at each time point compared to the placebo (p < 0.0001), The least squares (LS) mean difference in LSEQ-GTS score at T0 between placebo group and DEX group was 2 (95% CI, -1-6), p = 0.4071 and at T5 was -14 (95% CI, -17 to -10), p < 0.0001; The LS mean difference in the LSEQ-QOS score at T0 was -1 (95% CI, -4 to 1), p = 0.4821 and at T5 was -16 (95% CI, -21 to -10), p < 0.0001. The DEX group exhibited significant improvement in Total Sleep Time (TST), Sleep Onset Latency (SOL), and Sleep Efficiency (SE), at each time point after treatment compared to the placebo group (p < 0.0001). The PSQI and ISI scores in the DEX group were reduced after treatment (p < 0.001). No significant adverse events were reported with the use of dexmedetomidine. Conclusion and Implications: This study demonstrates that intranasal administration of dexmedetomidine improves postoperative sleep quality in older patients with chronic insomnia who undergo surgery, without increasing the incidence of adverse effects. Clinical Trial Registration: http://www.chictr.org.cn/, identifier ChiCTR2200057133.

10.
Cell Death Discov ; 9(1): 409, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935670

ABSTRACT

Postoperative multi-organ dysfunction (MOD) is associated with significant mortality and morbidity. Necroptosis has been implicated in different types of solid organ injury; however, the mechanisms linking necroptosis to inflammation require further elucidation. The present study examines the involvement of necroptosis and NLR family pyrin domain containing 3 (NLRP3) inflammasome in small intestine injury following traumatic surgery. Kidney transplantation in rats and renal ischaemia-reperfusion (I/R) in mice were used as traumatic and laparotomic surgery models to study necroptosis and inflammasome activation in the small intestinal post-surgery; additional groups also received receptor-interacting protein kinase 1 (RIPK1) inhibitor necrostatin-1s (Nec-1s). To investigate whether necroptosis regulates inflammasome activity in vitro, necroptosis was induced in human colonic epithelial cancer cells (Caco-2) by a combination of tumour necrosis factor-alpha (TNFα), SMAC mimetic LCL-161 and pan-caspase inhibitor Q-VD-Oph (together, TLQ), and necroptosis was blocked by Nec-1s or mixed lineage kinase-domain like (MLKL) inhibitor necrosulfonamide (NSA). Renal transplantation and renal ischaemia-reperfusion (I/R) upregulated the expression of necroptosis mediators (RIPK1; RIPK3; phosphorylated-MLKL) and inflammasome components (P2X purinoceptor subfamily 7, P2X7R; NLRP3; caspase-1) in the small intestines at 24 h, and Nec-1s suppressed the expression of inflammasome components. TLQ treatment induced NLRP3 inflammasome, promoted cleavage of caspase-1 and interleukin-1 beta (IL-1ß), and stimulated extracellular ATP release from Caco-2 cells, and MLKL inhibitor NSA prevented TLQ-induced inflammasome activity and ATP release from Caco-2 cells. Our work suggested that necroptosis and inflammasome interactively promote remote postoperative small intestinal injury, at least in part, through ATP purinergic signalling. Necroptosis-inflammasome axis may be considered as novel therapeutic target for tackling postoperative MOD in the critical care settings.

11.
Br J Anaesth ; 131(6): 989-1001, 2023 12.
Article in English | MEDLINE | ID: mdl-37689540

ABSTRACT

Cancer is a growing global burden; there were an estimated 18 million new cancer diagnoses worldwide in 2020. Excisional surgery remains one of the main treatments for solid organ tumours in cancer patients and is potentially curative. Cancer- and surgery-induced inflammatory processes can facilitate residual tumour cell survival, growth, and subsequent recurrence. However, it has been hypothesised that anaesthetic and analgesic techniques during surgery might influence the risk of cancer recurrence. This narrative review aims to provide an updated summary of recent observational studies and new randomised controlled clinical trials on whether certain specific anaesthetic and analgesic techniques or perioperative interventions during tumour resection surgery of curative intent materially affect long-term oncologic outcomes.


Subject(s)
Anesthesia , Anesthetics , Humans , Neoplasm Recurrence, Local , Anesthesia/methods , Anesthetics/adverse effects , Analgesics/adverse effects
12.
Front Nutr ; 10: 1117028, 2023.
Article in English | MEDLINE | ID: mdl-37771755

ABSTRACT

Background: Elderly patients have a high risk of developing postoperative cognitive dysfunction (POCD). Gastrointestinal disorders, such as constipation, in the elderly population may be involved in the pathogenesis of neurological disorders by promoting inflammatory responses due to a 'leaky gut'. General anesthetic sevoflurane may impair gastrointestinal function in elderly patients to trigger neurological complications following surgery. Therefore, we hypothesized that elderly individuals with gastrointestinal dysfunction may be more vulnerable to sevoflurane and consequently develop POCD. Methods: Aged mice were randomly divided into four groups: control (CTRL), CTRL+sevoflurane (Sev), slow transit constipation (STC), and STC + Sev. Mice in the STC and STC + Sev groups were intra-gastrically administrated loperamide (3 mg/kg, twice a day for 7 days) to induce a slow transit constipation (STC) model determined with fecal water content and the time of first white fecal pellet, whereas mice in the other groups received the similar volume of saline. One week later, mice in the CTRL+Sev group and STC + Sev group received 2% sevoflurane for 2 h. The gut permeability evaluated with 4-kDa fluorescein isothiocyanate (FITC)-dextran, serum cytokines, microglia density, TLR4/NF-κB signaling expression, and POCD-like behavioral changes were determined accordingly. Results: The loperamide-induced STC mice had decreased fecal water content and prolonged time of first white fecal pellet. Sevoflurane exposure caused significantly increased gut permeability and serum cytokines, as well as the activation of microglia and the TLR4/NF-κB signaling pathway in the prefrontal cortex of the aged STC mice. Sevoflurane also caused cognitive impairment and emotional phenotype abnormality in aged STC mice. Conclusion: Aged STC mice were more vulnerable to sevoflurane anesthesia and consequently developed POCD-like behavioral changes. Our data suggest that gastrointestinal disorders including constipation may contribute to the development of POCD.

13.
Medicine (Baltimore) ; 102(39): e35226, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773828

ABSTRACT

RATIONALE: Cardiac arrest (CA) caused by trigeminocardiac reflex (TCR) after endoscopic nasal surgery is rare. Hence, when a patient suffers from TCR induced CA in the recovery room, most doctors may not be able to find the cause in a short time, and standard cardiopulmonary resuscitation and resuscitation measures may not be effective. Providing circulatory assistance through venous-arterial extracorporeal membrane oxygenation (VA-ECMO) can help healthcare providers gain time to identify the etiology and initiate symptom-specific treatment. PATIENT CONCERNS: We report a rare case of CA after endoscopic nasal surgery treated with VA-ECMO. DIAGNOSES: We excluded myocardial infarction, pulmonary embolism, allergies, hypoxia, and electrolyte abnormalities based on the relevant examination results. Following a multidisciplinary consultation, clinical manifestation and a review of previous literature, we reasoned that the CA was due to TCR. INTERVENTIONS: VA-ECMO was established to resuscitate the patient successfully during effective cardiopulmonary resuscitation. OUTCOMES: ECMO was successfully evacuated a period of 190 minutes of therapy. The patient was discharged home on day 8. LESSONS: TCR is notable during endoscopic nasal surgery. Our case indicates that CA in operating room is worth prolonged CCPR. The ideal time for ECPR implementation should not be limited within 20 minutes after CCPR.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Heart Arrest , Nasal Surgical Procedures , Reflex, Trigeminocardiac , Humans , Extracorporeal Membrane Oxygenation/methods , Heart Arrest/etiology , Heart Arrest/therapy , Cardiopulmonary Resuscitation/methods , Nasal Surgical Procedures/adverse effects , Receptors, Antigen, T-Cell , Retrospective Studies
14.
Front Med (Lausanne) ; 10: 1107369, 2023.
Article in English | MEDLINE | ID: mdl-37576000

ABSTRACT

Background: Neuroinflammation and neuronal injury have been reported to be associated with the development of postoperative delirium in both preclinical and clinical settings. This study aimed to investigate the potential correlation between biomarkers of neurofilament light chain and glial fibrillary acidic protein and emergence and postoperative delirium in elderly patients undergoing surgery. Methods: Patients who developed emergence delirium (n = 30) and postoperative delirium (n = 32), along with their matched controls, were enrolled after obtaining ethics approval and written informed consent. Delirium was assessed using the Confusion Assessment Method for the Intensive Care Unit or Confusion Assessment Method scale, and blood samples were collected before and after surgery for plasma neurofilament light chain and glial fibrillary acidic protein measurements using a single-molecule array. Results: The study found that in patients with emergence delirium, the increase in plasma neurofilament light chain protein levels during surgery was significantly higher than in non-delirium patients (P = 0.002). Additionally, in patients with postoperative delirium, both the increase in plasma neurofilament light chain protein levels (P < 0.001) and the increase in plasma glial fibrillary acidic protein levels during surgery (P = 0.008) were significantly higher than in non-delirium patients. Multivariate logistic regression analysis showed that the increase in plasma neurofilament light chain protein was associated with emergence delirium (adjusted OR = 1.872, P = 0.005), and the increase in plasma glial fibrillary acidic protein was associated with postoperative delirium (adjusted OR = 1.419, P = 0.016). Moreover, the American Society of Anesthesiologists Physical Status Classification and surgical duration were also found to be associated with delirium in elderly patients. Conclusion: Our findings suggest that emergence delirium is linked to elevated levels of neurofilament light chain, a biomarker of axonal injury, during surgery. Furthermore, in addition to axonal injury, postoperative delirium was also associated with an increase in glial fibrillary acidic protein, a marker of astrocyte activation.

15.
Hepatobiliary Surg Nutr ; 12(4): 545-566, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37600997

ABSTRACT

Background: Identifying a potentially difficult airway is crucial both in anaesthesia in the operating room (OR) and non-operation room sites. There are no guidelines or expert consensus focused on the assessment of the difficult airway before, so this expert consensus is developed to provide guidance for airway assessment, making this process more standardized and accurate to reduce airway-related complications and improve safety. Methods: Seven members from the Airway Management Group of the Chinese Society of Anaesthesiology (CSA) met to discuss the first draft and then this was sent to 15 international experts for review, comment, and approval. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) is used to determine the level of evidence and grade the strength of recommendations. The recommendations were revised through a three-round Delphi survey from experts. Results: This expert consensus provides a comprehensive approach to airway assessment based on the medical history, physical examination, comprehensive scores, imaging, and new developments including transnasal endoscopy, virtual laryngoscopy, and 3D printing. In addition, this consensus also reviews some new technologies currently under development such as prediction from facial images and voice information with the aim of proposing new research directions for the assessment of difficult airway. Conclusions: This consensus applies to anesthesiologists, critical care, and emergency physicians refining the preoperative airway assessment and preparing an appropriate intubation strategy for patients with a potentially difficult airway.

16.
Theranostics ; 13(13): 4376-4390, 2023.
Article in English | MEDLINE | ID: mdl-37649611

ABSTRACT

Background: Effective preservation strategies to ameliorate lung graft ischaemia injury are needed to rescue 'extended criteria' or 'marginal' lung grafts, and to improve recipient outcomes after transplantation. Methods: Lung grafts from male Lewis rats were extracted after 40 min of cardiocirculatory death, and healthy human lung tissues were collected from patients undergoing a lobectomy. Lung samples were then preserved in a 4°C preservation solution supplemented with 0.1 nM Dexmedetomidine (Dex, α2-adrenoceptor agonist) for 16 h. In vitro, human lung epithelial A549 cells were preserved in the 4°C preservation solution with 0.1 nM Dex for 24 h, then re-cultured in the cell culture medium at 37°C to mimic the clinical scenario of cold ischaemia and warm reperfusion. Lung tissues and cells were then analysed with various techniques including western blot, immunostaining and electron microscope, to determine injuries and the protection of Dex. Results: Prolonged warm ischaemia after cardiocirculatory death initiated Rip kinase-mediated necroptosis, which was exacerbated by cold storage insult and enhanced lung graft injury. Dex supplementation significantly reduced necroptosis through upregulating Nrf2 activation and reducing oxidative stress, thereby significantly improving lung graft morphology. Dex treatment also attenuated endoplasmic reticulum stress, stabilised lysosomes and promoted cell membrane resealing function, consequently reducing cell death and inflammatory activation after hypothermic hypoxia-reoxygenation in A549 cells. Conclusions: Inhibition of regulated cell death through Dex supplementation to the graft preservation solution improves allograft quality which may aid to expand the donor lung pool and enhance lung transplant outcomes per se.


Subject(s)
Lung Transplantation , Regulated Cell Death , Rats , Animals , Humans , Male , Rats, Inbred Lew , Necroptosis , Lung
17.
Br J Anaesth ; 131(3): 531-541, 2023 09.
Article in English | MEDLINE | ID: mdl-37543435

ABSTRACT

BACKGROUND: Sleep disorders can profoundly affect neurological function. We investigated changes in social and anxiety-related brain functional connectivity induced by sleep deprivation, and the potential therapeutic effects of the general anaesthetics propofol and sevoflurane in rats. METHODS: Twelve-week-old male Sprague-Dawley rats were subjected to sleep deprivation for 20 h per day (from 14:00 to 10:00 the next day) for 4 consecutive weeks. They were free from sleep deprivation for the remaining 4 h during which they received propofol (40 mg kg-1 i.p.) or sevoflurane (2% for 2 h) per day or no treatment. These cohorts were instrumented for EEG/EMG recordings on days 2, 14, and 28. Different cohorts were used for open field and three-chambered social behavioural tests, functional MRI, nuclear magnetic resonance spectroscopy, and positron emission tomography imaging 48 h after 4 weeks of sleep deprivation. RESULTS: Propofol protected against sleep deprivation-induced anxiety behaviours with more time (44.7 [8.9] s vs 24.2 [4.1] s for the sleep-deprivation controls; P<0.001) spent in the central area of the open field test and improved social preference index by 30% (all P<0.01). Compared with the sleep-deprived rats, propofol treatment enhanced overall functional connectivity by 74% (P<0.05) and overall glucose metabolism by 30% (P<0.01), and improved glutamate kinetics by 20% (P<0.05). In contrast, these effects were not found after sevoflurane treatment. CONCLUSIONS: Unlike sevoflurane, propofol reduced sleep deprivation-induced social and anxiety-related behaviours. Propofol might be superior to sevoflurane for patients with sleep disorders who receive anaesthesia, which should be studied in clinical studies.


Subject(s)
Anesthetics, Inhalation , Anxiety , Methyl Ethers , Propofol , Sleep Deprivation , Animals , Male , Rats , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Methyl Ethers/pharmacology , Propofol/pharmacology , Rats, Sprague-Dawley , Sevoflurane/pharmacology , Sleep , Social Behavior
18.
Br J Anaesth ; 131(2): 253-265, 2023 08.
Article in English | MEDLINE | ID: mdl-37474241

ABSTRACT

BACKGROUND: Delirium is a common and disturbing postoperative complication that might be ameliorated by propofol-based anaesthesia. We therefore tested the primary hypothesis that there is less delirium after propofol-based than after sevoflurane-based anaesthesia within 7 days of major cancer surgery. METHODS: This multicentre randomised trial was conducted in 14 tertiary care hospitals in China. Patients aged 65-90 yr undergoing major cancer surgery were randomised to either propofol-based anaesthesia or to sevoflurane-based anaesthesia. The primary endpoint was the incidence of delirium within 7 postoperative days. RESULTS: A total of 1228 subjects were enrolled and randomised, with 1195 subjects included in the modified intention-to-treat analysis (mean age 71 yr; 422 [35%] women); one subject died before delirium assessment. Delirium occurred in 8.4% (50/597) of subjects given propofol-based anaesthesia vs 12.4% (74/597) of subjects given sevoflurane-based anaesthesia (relative risk 0.68 [95% confidence interval {CI}: 0.48-0.95]; P=0.023; adjusted relative risk 0.59 [95% CI: 0.39-0.90]; P=0.014). Delirium reduction mainly occurred on the first day after surgery, with a prevalence of 5.4% (32/597) with propofol anaesthesia vs 10.7% (64/597) with sevoflurane anaesthesia (relative risk 0.50 [95% CI: 0.33-0.75]; P=0.001). Secondary endpoints, including ICU admission, postoperative duration of hospitalisation, major complications within 30 days, cognitive function at 30 days and 3 yr, and safety outcomes, did not differ significantly between groups. CONCLUSIONS: Delirium was a third less common after propofol than sevoflurane anaesthesia in older patients having major cancer surgery. Clinicians might therefore reasonably select propofol-based anaesthesia in patients at high risk of postoperative delirium. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IPR-15006209) and ClinicalTrials.gov (NCT02662257).


Subject(s)
Anesthetics, Inhalation , Emergence Delirium , Neoplasms , Propofol , Humans , Female , Aged , Male , Propofol/adverse effects , Sevoflurane/adverse effects , Anesthetics, Inhalation/adverse effects , Follow-Up Studies , Anesthesia, General/adverse effects , Emergence Delirium/chemically induced , Neoplasms/surgery
19.
Br J Anaesth ; 131(2): 266-275, 2023 08.
Article in English | MEDLINE | ID: mdl-37474242

ABSTRACT

BACKGROUND: Experimental evidence indicates that i.v. anaesthesia might reduce cancer recurrence compared with volatile anaesthesia, but clinical information is observational only. We therefore tested the primary hypothesis that propofol-based anaesthesia improves survival over 3 or more years after potentially curative major cancer surgery. METHODS: This was a long-term follow-up of a multicentre randomised trial in 14 tertiary hospitals in China. We enrolled 1228 patients aged 65-90 yr who were scheduled for major cancer surgery. They were randomised to either propofol-based i.v. anaesthesia or to sevoflurane-based inhalational anaesthesia. The primary endpoint was overall survival after surgery. Secondary endpoints included recurrence-free and event-free survival. RESULTS: Amongst subjects randomised, 1195 (mean age 72 yr; 773 [65%] male) were included in the modified intention-to-treat analysis. At the end of follow-up (median 43 months), there were 188 deaths amongst 598 patients (31%) assigned to propofol-based anaesthesia compared with 175 deaths amongst 597 patients (29%) assigned to sevoflurane-based anaesthesia; adjusted hazard ratio 1.02; 95% confidence interval (CI): 0.83-1.26; P=0.834. Recurrence-free survival was 223/598 (37%) in patients given propofol anaesthesia vs 206/597 (35%) given sevoflurane anaesthesia; adjusted hazard ratio 1.07; 95% CI: 0.89-1.30; P=0.465. Event-free survival was 294/598 (49%) in patients given propofol anaesthesia vs 274/597 (46%) given sevoflurane anaesthesia; adjusted hazard ratio 1.09; 95% CI 0.93 to 1.29; P=0.298. CONCLUSIONS: Long-term survival after major cancer surgery was similar with i.v. and volatile anaesthesia. Propofol-based iv. anaesthesia should not be used for cancer surgery with the expectation that it will improve overall or cancer-specific survival. CLINICAL TRIAL REGISTRATIONS: ChiCTR-IPR-15006209; NCT02660411.


Subject(s)
Neoplasms , Propofol , Sevoflurane , Propofol/adverse effects , Sevoflurane/adverse effects , Neoplasms/surgery , Humans , Male , Female , Aged , Follow-Up Studies , Anesthetics, Intravenous , Anesthesia, Inhalation , Cancer Survivors
20.
Br J Anaesth ; 131(3): 542-555, 2023 09.
Article in English | MEDLINE | ID: mdl-37517957

ABSTRACT

BACKGROUND: Sleep loss and its associated conditions (e.g. cognitive deficits) represent a large societal burden, but the underlying mechanisms of these cognitive deficits remain unknown. This study assessed the effect of dexmedetomidine (DEX) on cognitive decline induced by sleep loss. METHODS: C57BL/6 mice were subjected to chronic sleep restriction (CSR) for 20 h (5 pm-1 pm the next day) daily for 7 days, and cognitive tests were subsequently carried out. The neuromolecular and cellular changes that occurred in the presence and absence of DEX (100 µg kg-1, i.v., at 1 pm and 3 pm every day) were also investigated. RESULTS: CSR mice displayed a decline in learning and memory by 12% (P<0.05) in the Y-maze and by 18% (P<0.01) in the novel object recognition test; these changes were associated with increases in microglial activation, CD68+ microglial phagosome counts, astrocyte-derived complement C3 secretion, and microglial C3a receptor expression (all P<0.05). Synapse elimination, as indicated by a 66% decrease in synaptophysin expression (P=0.0004) and a 45% decrease in postsynaptic density protein-95 expression (P=0.0003), was associated with the occurrence of cognitive deficits. DEX activated astrocytic α2A adrenoceptors and inhibited astrocytic complement C3 release to attenuate synapse elimination through microglial phagocytosis. DEX restored synaptic connections and reversed cognitive deficits induced by CSR. CONCLUSIONS: The results demonstrate that complement pathway activation associated with synapse elimination contributes to sleep loss-related cognitive deficits and that dexmedetomidine protects against sleep deprivation-induced complement activation. Dexmedetomidine holds potential for preventing cognitive deficits associated with sleep loss, which warrants further study.


Subject(s)
Dexmedetomidine , Sleep Deprivation , Mice , Animals , Sleep Deprivation/complications , Complement C3/metabolism , Complement C3/pharmacology , Dexmedetomidine/pharmacology , Mice, Inbred C57BL , Complement Activation , Cognition , Hippocampus/metabolism , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...